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Sivashinsky’s �Acta Astron. 4, 1177 �1977�� nonlinear integrodifferential equation for the shape of corru-
gated one-dimensional flames is ultimately reducible to a 2N-body problem, involving the 2N complex poles
of the flame slope. Thual, Frisch, and Hénon �J. Phys. �France� 46, 1485 �1985�� derived singular linear
integral equations for the pole density in the limit of large steady wrinkles �N�1�, which they solved exactly
for monocoalesced periodic fronts of highest amplitude of wrinkling and approximately otherwise. Here we
solve those analytically for isolated crests, next for monocoalesced, then bicoalesced periodic flame patterns,
whatever the �large� amplitudes involved. We compare the analytically predicted pole densities and flame
shapes to numerical results deduced from the pole-decomposition approach. Good agreement is obtained, even
for moderately large Ns. The results are extended to give hints as to the dynamics of supplementary poles.
Open problems are evoked.
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I. INTRODUCTION

Being able to describe the nonlinear development of the
Landau-Darrieus �1,2� �LD� instability of premixed-flame
fronts is a central topic in combustion theory. As early as
1977 Sivashinsky �3� showed, in the limit A�1 of small
Attwood numbers based upon the fresh gas ��u� or burnt gas
��b��u� densities, 0�A���u−�b� / ��u+�b��1, that the
shape ��x , t� of a flat-on-average spontaneously evolving
wrinkled flame is governed by

�t +
1

2
�x

2 = ��xx + I��� �1�

in suitable units. In Eq. �1� the subscripts denote partial de-
rivatives with respect to time, t, and coordinate, x, normal to
the mean direction of propagation, and the “viscosity” �
�0 represents a reciprocal Peclet number based upon the
actual flame thickness and the wrinkle wavelength. The
linear integral operator I�·� is defined by I�eikx�= �k�eikx

�whereby I��� is the Hilbert transform, Ĥ�−�x�, of −�x� and
stems from the LD instability. The growth and/or decay rate
of infinitesimal harmonics is �k�−�k2, which identifies 1 /�
and � as neutral wave number and minimum growth time,
respectively. The nonlinearity is geometrical, accounting as it
does for the cosine, �1+s2�−1/2�1−s2 /2+¯, of the small
angle �arctan�s��s+ ¯ � that the local normal to the flame
front makes to the mean direction of propagation, where s
��x	A is the unscaled front slope. Originally derived in
�3� as a leading order result for A→0+, Eq. �1� happens to
govern the shape of steadily propagating fronts even when
two more terms of the A expansion are retained �4,5�; its
structure then remains valid practically up to A=3 /4, i.e.,
�u=7�b �4�.

Numerics �6� reveals that “steady” solutions of Eq. �1�,
corresponding to ��x , t�=−Vt+��x� are often ultimately
reached. When Eq. �1� is integrated with periodic boundary
conditions for “not-too-small” values of �, ��1 /25 say, the
“steady” pattern has a single crest per x-wise interval of 2

length, where �xx is large and negative; without loss of gen-
erality one may assume that one is located at x=0, in which
case �x=0 when x is an integer multiple of 
 �i.e., x=0 �mod

�� and �xx��
��1 /
. If Neumann conditions at x=0 and
x=
 are used instead, still with a moderately small �, the
final pattern obtained from numerical �pseudospectral� inte-
grations of Eq. �1� may also have an extra crest located at
x=
 �7�, with �xx�
� large and negative. By the very way
they are obtained as the final state of an unsteady process the
two-crested patterns have a finite basin of attraction, contrary
to the case of periodic boundary conditions �7� where the
only stable patterns have a single crest per cell; yet such
“half-channel” solutions happen to coincide with the restric-
tion to 0�x�
 of properly shifted 2
 periodic ones, for
these are symmetric about x=0 and x=
. If � is too small the
widest patterns become very sensitive to noise, even when
caused by numerical rounding off. In �8� the estimate 
�O�e−1/2����c��� was obtained for the noise intensity 
needed to trigger the appearance of extra cells on top of the
main ones with periodic boundary conditions; the number �
in the above exponent is �xx��
��1 /
; since the most rap-
idly growing noise-induced disturbances �with initial wave
numbers �k��1 /� �8�� of a nearly parabolic trough undergo
an O�e1/2��� amplification, they ultimately become visible as
subwrinkles of O�1� final amplitude if �c���. Having a
larger �xx�0 at their troughs �see Sec. VII�, two-crested
patterns are presumably less sensitive to noise than the
single-crest ones associated with the same wavelength be-
cause c��� increases dramatically with � when � is small.
The numerical work of Ref. �9� also showed that sums
��x1 ,x2 , t�=�1�x1 , t�+�2�x2 , t� of orthogonal, two-crested
one-dimensional �1D� patterns play a central role in the
study of Eq. �1� generalized to two-dimensional flames
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�x→ �x1 ,x2� ,�x
2→ ����2, �xx→��, I�·��multiplication by

�k ·k�1/2 in the 2D Fourier space k= �k1 ,k2�� and to rectan-
gular domains in the Cartesian �x1 ,x2� plane. Without noise
such sums are exact stable solutions; with random additive
forcing they recurrently appear as long-lived transients when
Neumann conditions are adopted.

Further analyses on the stability of solutions of Eq. �1�
and their responses thus seem warranted, and getting the
“steady” patterns that correspond to wide, hence large, cells
�or small �s� is a prerequisite. The present contribution is
intended to do this.

It is organized as follows. Section II introduces the pole-
decomposition method, the discrete equations for the pole
locations, and the two integral equations that approximate
them for large front wrinkles. The latter equations are next
solved analytically for isolated crests �Sec. III� then one-
crested periodic patterns �Sec. IV�, and the prediction com-
pared to numerical results from the pole-decomposition ap-
proach. Sections V and VI compute the flame speed from the
density, and take up the dynamics of a few extra poles,
respectively. Section VII generalizes the above integral equa-
tions to a pair of coupled ones corresponding to two-crest
periodic flames �and “half-channel” ones�, then solves them
analytically; comparisons with numerics are again presented.
We end up with concluding remarks and open problems
�Sec. VIII�.

II. POLE DECOMPOSITION(S)

In 1985 Thual, Frisch, and Hénon �10� �herein referred to
as “TFH”� discovered �see also �11�� that Eq. �1� possesses
solutions ��x , t� representing 2
-periodic flame patterns
with slopes �x in the form

�x�x,t� = − � 	
�=−N

N

cot
 x − z�

2
� , �2�

in which the complex-valued poles of �x�x , t�, z��t�, are in-
volved in conjugate pairs �z−�=z

�
*, ��0� for �x�x , t� to be

real when x is. For this pole-decomposed expression to solve
Eq. �1�, the z��s ��=−N , . . . ,−1 ,1 , . . . ,N� must evolve ac-
cording to the 2N-body problem

dz�

dt
= � 	

�=−N

N

���

cot
 z� − z�

2
� − i sgn�Im�z��� , �3�

where Im�·� denotes the imaginary parts of �·� and the
signum function �with sgn�0�=0� accounts for the LD insta-
bility. Once Eq. �3� is solved for the pole locations, ��x , t� is
available from Eq. �2� and the wrinkling-induced excess
propagation speed V=−��t�0 follows from Eq. �1�:

V =
1

2
��x

2 , �4�

where �· stands for an average along the x coordinate; thus,
V simply measures the wrinkling-induced fractional increase
in flame arclength, since ��1+s2�1/2−1= �s2 /2+ ¯ �A2

	V. Beside periodic ��x , t�s, Eq. �1� also allows �10� for
isolated nonperiodic wrinkles that have an infinite wave-
length, V=0, cot�z� replaced by 1 /z, and

dz�

dt
= � 	

�=−N

N

���

2

z� − z�

− i sgn�Im�z��� . �5�

In the latter situation, the precise value of ��0 does not
matter since it could be scaled out, and the integer N�1 is
arbitrary. As for Eqs. �2� and �3�, the maximum allowed
value Nopt��� of N in steady configurations increases with
1 /��1 �10�. As shown by TFH, steady flames obtained from
Eqs. �3� or �5� correspond to poles that “coalesce” �or align�
along parallels to the imaginary axis, as a result of the pair-
wise pole interactions that are attractive along the real x axis
and repulsive in the normal direction. In the case of an iso-
lated crest located at x=0, the poles ultimately involved in
steady solution are of the form iB�, −N���N, ��0, with
real B�s satisfying coupled discrete equations deduced from
Eq. �5�:

� 	
�=−N

N

���

2

B� − B�

= sgn�B�� . �6�

The authors of Ref. �10� also evidenced that the larger the
number N of pole pairs in such “vertical” steady alignments,
the smoother the involved poles are distributed along the B
coordinate, with B�+1−B� much smaller than BN. This sug-
gested TFH to replace the discrete sum in Eq. �6� �or its
analogue deduced from Eq. �3�� by an integral over the con-
tinuous variable B, with such a continuous measure that
P�B�dB is the number of poles located between B and B
+dB; a constructive definition of P�B� is specified in Eq.
�20�. In this continuous approximation the steady versions of
Eqs. �2� and �3� are amenable to singular Fredholm integral
equations, specifically,

�– 2�P�B��
B − B�

dB� = sgn�B� �7�

in the nonperiodic situations �an isolated wrinkle at x=0�,
and

�– �P�B��coth
B − B�

2
�dB� = sgn�B� �8�

for the monocoalesced 2
 periodic cases �one single crest
per cell, at x=0 �mod 2
��. In Eqs. �7� and �8� B denotes the
pole imaginary coordinate, and the Cauchy principal parts
�– ·dB� stem from the condition ��� on the sums featured in
Eqs. �3� and �5�. Consistent with their interpretation as pole
densities, the P�B�s showing up in Eqs. �7� and �8� both are
non-negative even functions of their argument �for �x to be
real when x is� and are normalized by

� P�B��dB� = 2N . �9�

In Eqs. �7�–�9� the integrals extend over the ranges �to be
determined as part of the solutions� where P�B��0. The
next sections will solve Eqs. �7�–�9� analytically, starting
with the simpler Eq. �7�.
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III. ISOLATED CREST

Because isolated crests have �x→0 at �x�→�, we first
anticipate the existence of some finite Bmax�0 such that
P��B��Bmax��0 in Eq. �7�. We next recall the identity

�–
−
/2


/2 cos��2M + 1����cos ��

sin � − sin ��
d�� = 
 sin��2M + 1���

�10�

that can be deduced, through the change of variable �→�
+
 /2, from a similar one appearing in the Prandtl theory of
lifting lines �12,13�. Identity �10� allows one to solve such
singular integral equations as Wigner’s �14� �for the density,
2�P say, of eigenvalues of large real random matrices in the
Gaussian orthogonal ensemble�, written here as

�– 2�P�B��
B − B�

dB� = B; �11�

its solution is the celebrated semicircle law 2
�P�B�
=max�Bmax cos � ,0� �14�, provided that one sets

B = Bmax sin �, −



2
� � �




2
, �12�

in Eq. �11�. Interestingly, the same change of independent
variable in Eq. �7� produces

�–
−
/2


/2 2�P����cos ��

sin � − sin ��
d�� = sgn��� , �13�

since sgn�B�=sgn��� for ����
. Over the same range �and
hence over the narrower support of P, ����
 /2�, the right-
hand side of Eq. �13� may be expanded as the Fourier series

sgn��� =
4



	
M=0

�
1

2M + 1
sin��2M + 1��� , �14�

consistent with our convention that sgn�0�=0. From Eq. �10�
the solution to Eq. �13� can thus be written as a Fourier series
of cosines that all vanish at �= �
 /2:

2�P��� =
4


2 	
M=0

�
1

2M + 1
cos��2M + 1��� �15�

=
1


2 ln
1 + cos �

1 − cos �
� �16�

=
1


2 ln
1 + �1 − B2/Bmax
2

1 − �1 − B2/Bmax
2 � , �17�

and P�0 for �B��Bmax; to obtain Eq. �17� from Eq. �16�,
Eq. �12� was explicitly employed.

The cumulative pole distribution R�B�=�0
BP�B��dB�

reads, after integration by parts,

2�R�B� =
Bmax


2 
sin � ln
1 + cos �

1 − cos �
+ 2�� , �18�

whereby the renormalization condition R�Bmax�=R��
=
 /2�=N fixes Bmax to be given by

Bmax = 2
N� . �19�

TFH �10� fitted the cumulative distribution they obtained
from a numerical resolution of Eq. �5� for steady arrange-
ments of aligned poles, by the expression 
2�R
=�0

B ln�1.28N�
2 / �B���dB� when �B��Bmax �10�. Equations
�17� and �19� show that 1.28 estimated from their numerical
pole distribution at �B��Bmax actually was a numerical ap-
proximation of 4 /
=1.273. . . . Figures 1 and 2 compare the
analytical findings �Eqs. �18� and �19�� to our own resolu-
tions of Eq. �5�, with N=10 and 100, respectively. The TFH
fit is also displayed for illustration. The pole density P is
defined for ��1 by

P��B� + B�−1�/2� � �B� − B�−1�−1, �20�

in terms of the pole locations �with B0=0 by convention�; it
is shown in Fig. 3 for N=100, and compared with the con-
tinuous approximation �17� and the TFH fit. Once the cumu-
lative distribution is determined by Eqs. �18� and �19� in the

continuous limit, approximations B̃� to the discrete pole lo-
cations can be retrieved upon solving �10�
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FIG. 1. Numerical vs analytical cumulative pole densities, for an
isolated crest with 1 /�=19.5, N=10. If exact, the theoretical curve
�dotted-dashed line, Eq. �18�� would pass through the middle of the
risers of the numerical staircase �solid line, Eq. �5��. The dashed
line is the TFH fit.
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FIG. 2. Same as in Fig. 1, for 1 /�=199.5, N=100. Only the
upper hull �solid line� of the exact staircase is shown, for readabil-
ity. The dashed line is the TFH fit.
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R�B̃�� = � − 1/2, � = 1, . . . ,N �21�

numerically �e.g., by the Newton-Raphson method, with the
“exact” B� as an initial guess�. The resulting crest shape

�̃�x� = − 2�	
�=1

N

ln
1 +
x2

B̃�
2 � �22�

is compared to the exact one �numerical� in Fig. 4 and to that
issued from the continuous approximation. The latter profile
has

�x = − �
−Bmax

Bmax 2�P�B�dB

x − iB
�23�

=−
1



sgn�x�ln
�x2/Bmax

2 + 1 + 1

�x2/Bmax
2 + 1 − 1

� , �24�

the second expression resulting from substitution of Eq. �17�
in Eq. �23�, then a look at p. 591 of Ref. �15�.

As suggested by the form of Eq. �23�, and confirmed
by Eq. �24�, �x�x� is most simply deduced from P��ix�
through contour integration in the complex B plane. A further
integration by parts of Eq. �24� yields the continuous-
approximation prediction for ��x� �up to an additive con-
stant�,

��x� = −
1



sgn�x�Bmax
sinh � ln

cosh � + 1

cosh � − 1
+ 2�� ,

�25�

where x=Bmax sinh � �compare to Eq. �12��. The integration
constant was selected in Fig. 4 to achieve good agreement
with the exact ��x� for �x�→�. Two final remarks: �i� �
disappeared as a factor in Eq. �24� as it should, because �
can be scaled out; �ii� ��x� is of the form �NF�x /�N�, and
this scale-invariance shows that the continuous appro-
ximation actually amounts to describing ��x� at large
distances compared to the actual radius of curvature
�1 /�

B̃1

Bmax4�P�B�dB /B2=o���� of the flame tip, when N�1

�that is, for large wrinkles�.

IV. MONOCOALESCED PERIODIC CREST

The following simple remark will allow us to solve Eq.
�8�, i.e., in the case where all the poles of �x are aligned
along the imaginary x axis �mod 2
�. Because P�B�� still is
an even function of B�, only the even parts �at fixed B� of
coth��B−B�� /2� will actually contribute to the integral over
B�. Equation �8� may thus be rewritten as

�–
−Bmax

Bmax �P�B���1 − tanh2�B�/2��
tanh�B/2� − tanh�B�/2�

dB� = sgn�B� , �26�

upon use of the known formula for the tanh�·� of a differ-
ence, and neglect of a term proportional to
WP�B��tanh�B� /2�dB�=0. We now set

tanh
B

2
� = tanh
Bmax

2
�sin �, −




2
� � �




2
, �27�

converting Eq. �26� into

�–
−
/2


/2 2�P�B��cos ��

sin � − sin ��
d�� = sgn��� , �28�

which is nothing but Eq. �13�. Therefore the sought after pole
density is still given by Eq. �16�, the only difference with the
previous nonperiodic case being that B, Bmax, and � are now
related by Eq. �27� instead of Eq. �12�.

The new cumulative density R�B�=�0
BP�B��dB� is given,

after an integration by parts, by


2�R�B� =
1

2
ln

1 + A sin �

1 − A sin �
ln

1 + cos �

1 − cos �

+ �
0

�

ln
1 + A sin ��

1 − A sin ��

d��

sin ��
, �29�

A� tanh�Bmax /2�, whereby the normalization �9� requires

N�
2 = �
0


/2

ln
1 + A sin �

1 − A sin �

d�

sin �
. �30�

As the above integral turns out to be 
 arcsin A �p. 591 of
�15�� the range of P�B�, still given by R�Bmax�=N, now sat-
isfies
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FIG. 4. Shapes of an isolated crest with 1 /�=19.5, N=10: con-
tinuous approximation �Eq. �25�, dotted-dashed line�, exact �solid
line�, and smooth approximation from Eq. �22� �dotted�.
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FIG. 3. Numerical �Eq. �20�, solid line� vs analytical �Eq. �17�,
dotted-dashed line� pole densities P�B� for an isolated crest with
1 /�=199.5, N=100. The dashed line is the TFH fit.
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tanh�Bmax/2� = sin�
N�� �31�

instead of Eq. �19�. The latter and Eq. �31� coincide for

N��1, as do the associated pole densities. The maximum
Bmax allowed by Eq. �31�, Bmax= +�, has 2N�=1 and
cos ��1 /cosh�B /2�, where P�B� resumes the form

P�B� =
1


2�
ln
coth

�B�
4
� �32�

obtained by TFH via Fourier transformations. Figure 5 com-
pares our predictions, Eqs. �29� and �31�, with very accurate
solutions of Eq. �3� for N=100 and 2N�=1. Very good
agreement is obtained even if N is only moderately large, and
carries over to the pole densities themselves. Again, approxi-

mate solutions B̃� can be retrieved from the analog of Eq.
�21�, and an approximate flame front shape from

�̃�x� = − 2�	
�=1

N

ln�1 − cos x sech B̃�� + const. �33�

Figure 6 shows a comparison between Eq. �33�, the exact
flame shape obtained from the exact �yet obtained numeri-

cally� B�s satisfying Eq. �3�, and the curve deduced from the
continuous approximation, for which the flame slope �x�x�
reads

�x = − �� cot
 x − iB

2
�P�B�dB , �34�

again a real function because P�−B�= P�B�. With P�B� given
by Eqs. �16�, �27�, and �31� the above integral can be reduced
to one available in p. 591 of �15� and yields �for −
�x
�
�

�x�x� = −
1



sgn���ln

cosh � + 1

cosh � − 1
, tan

x

2
� A sinh � ,

�35�

thereby confirming that �x�x� is accessible from P�B� by
analytical continuation to �ix. In particular, the TFH solu-
tion, Eq. �32�, has 
�x=−2 sgn�x�ln�cot x /4� and
�xx��
�=1 /
; more generally, �xx��
�=A /
. A further in-
tegration by parts yields

− i
��x� = sgn�x�ln
1 + iA sinh �

1 − iA sinh �
ln

cosh � + 1

cosh � − 1

+ 2 sgn�x��
0

�

ln
1 + iA sinh ��

1 − iA sinh ��

d��

sinh ��
,

�36�

which cannot be evaluated in simple closed form, but may be
compared to Eq. �29�; of course ��x� is real when x is, since
the complex ln�·� in Eq. �36� also reads 2i arctan�A sinh ��
= ix. Note that ��x� has the form F�x ;N��, in the present
units where the pattern is 2
 periodic. Adopting ��2
 as a
wavelength would give 2
�=�F�2
x /� ;2
N� /�� with
the same F. Accordingly, if �N /� is kept fixed, �xx��� /2�
scales similar to 1 /�, as it should for �→0, whereby halving
the wavelength renders the patterns less sensitive to noise
�see the Introduction�.

V. FLAME SPEED FROM CONTINUOUS POLE DENSITY

Plugging Eq. �34� into Eq. �4� allows the wrinkling-
induced increase in flame speed V to be written as

2V = �2� � P�B�P�B���cot
x − iB

2
cot

x − iB�

2
�dBdB�.

�37�

Although the one-variable integrals involved when squaring
Eq. �34� are ordinary ones, they may be written as principal
parts. We next invoke the trigonometric identity cot a cot b
=−1+cot�a−b��cot b−cot a� and the average

�cot
x − iB

2
� = i sgn�B� �38�

to transform Eq. �37� into
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FIG. 5. Numerical �solid line� vs analytical �Eq. �29�, dotted-
dashed line� cumulative pole densities for a monocoalesced periodic
crest, for 1 /�=199.5 and N=100 �=Nopt����. Only the upper hull of
the numerical staircase is shown.
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FIG. 6. Shapes of a monocoalesced periodic flame with 1 /�
=19.5, N=10 �=Nopt����: continuous approximation �Eq. �36�,
dotted-dashed curve� vs exact result �solid line� and smooth ap-
proximation �Eq. �33�, dotted�.
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2
V

�2 = −� � P�B�P�B��dBdB�

+ 2��– sgn�B�P�B�P�B��coth
B − B�

2
�dB�dB

�39�

The first double integral �=��P�B�dB�2� in Eq. �39� follows
from the normalization �9�, and is �2N�2. The second one is
obtained from Eq. �8� after multiplication of both sides by
P�B�sgn�B�dB and subsequent integration over B: by Eq. �9�,
it is 2N /�. Thus the simple formula

V = 2N��1 − N�� �40�

ensues; notice that it was obtained without having to solve
Eq. �8�. Actually Eq. �39� can be shown from Eq. �3� to hold
whatever N and � �16�, again without solving the pole equa-
tions themselves.

In view of the accuracy of Eq. �40� one may inquire
whether the solutions of Eqs. �7� and �8� satisfy the “invis-
cid” Sivashinsky equation, i.e., Eq. �1� with �=0, in the
steady cases. To show they do, for x�0 at least, one may set
P= P� and N=N� to remove � from Eqs. �7� and �9�, then
process the Landau-Darrieus term of Eq. �1� as follows in the
case of an isolated crest:

2iI��� =� 4P�B�sgn�B�
x − iB

dB

=� 2P�B�
x − iB

dB�– 2P�B��
B − B�

dB� + �B ↔ B��

=� � 4iP�B�P�B��
�x − iB��x − iB��

dBdB�

= i�x
2, �41�

where the notation �B�↔B� represents a second copy of the
integral that precedes it, with B and B� interchanged. The
lines above successively use Eq. �7�, acknowledge that
�B ,B�� are dummy variables of integration that may be in-
terchanged, then employ Eq. �23� squared. Hence Eq. �25�
satisfies Eq. �1� when �=0 and N is prescribed, if x�0.
Thanks to Eq. �39�, a similar analysis applies to Eq. �8�,
provided x�0 �mod 2
�.

Besides providing one with an exact P�B�, Eq. �16� shows
that Eq. �8� admits a continuum of solutions, for there exists
nothing in Eq. �9� to tell one that N ought to be an integer;
this will be commented on later �see Sec. VIII�. One finally
specializes Eq. �8� to B=Bmax to show that N is constrained
by 0�2N��1, since coth�Bmax−B��1 �see also Eq. �31��.

VI. DYNAMICS OF SUPPLEMENTARY POLE PAIRS

In 2000, Vaynblatt and Matalon �17� addressed the linear
stability of pole-decomposed monocoalesced “steady” solu-
tions −Vt+��x� to Eq. �1�. Upon writing ��x , t�+Vt−��x�
�exp��t����x��1 then analytically solving the linearized
dynamics to obtain � and ���x�, the authors of �17� identi-
fied two types of linear modes. The modes of type I describe

how the 2N poles of �x�x� evolve when displaced by infini-
tesimal amounts from equilibrium; all those are stable
���0�, but one that has �=0 �see below�. The modes of
type II were interpreted �17,18� as resulting from x-periodic
arrays of poles at �i� that may spontaneously approach the
real axis if N is too small for the selected ��1. The overall
conclusion was thus: when endowed with 2
-periodic
boundary conditions, all the monocoalesced solutions are
linearly unstable, except a single one that has N=Nopt���
� ��1+1 /�� /2��1 /2� ��·�� integer part� and is neutrally
stable ��=0� against shifts along the x axis, the correspond-
ing anti-symmetric eigenmode being �0�x�=�x�x�. For
N�Nopt, modes of type II can manifest themselves, two par-
ticularly dangerous ones corresponding to incipient second-
ary wrinkles centered on the main crests �x=0, mod 2
� or
troughs �x=
, mod 2
�.

When Neumann conditions are employed instead, the
aforementioned shifts are not allowed any longer because
�0x�0 at x=0 and x=
. Numerical integrations �7� of Eqs.
�1� and �3� evidence that there may then exist stable bicoa-
lesced patterns comprising an extra crest located at x=
.
Even though the steady 2
-periodic patterns also satisfy Eq.
�1� with Neumann conditions when properly shifted to have
�x�0�=0=�x�
�, no stability analysis similar to �17� is yet
available in this case; yet instabilities then necessarily re-
quire N�Nopt���. Here we address a restricted aspect of the
problem, namely: we study how the previously determined
monocoalesced “steady” solutions �25� and �36� interact with
extra pairs of poles. Since the free dynamics �3� conserves
the total number of pole pairs at its t=0 value, it makes sense
to consider ��x ,0� that involve them in a larger number
�N+n� than the N=O�1 /�� ones retained in a steady profile
��x�. Each of the n supplementary pairs at xm�t�� iym�t�
contributes a perturbation �m�x , t�= ��m−4�	 j�1
	exp�−j�ym��cos�j�x−xm�� / j to the flame shapes �this fol-
lows from Eq. �2� via a term-by-term Fourier expansion
�10�� and, as shown in �18�, superposing �ms can reproduce
virtually any disturbance ��x ,0�−��x�. In the present for-
mulation the only difference between Neumann and
2
-periodic boundary conditions deals with the initial phases
xm�0�: whereas the former require the xms to be compatible
with the x↔−x and 
−x↔
+x symmetries, the latter do
not.

Contrary to the more conventional normal-mode method
�to which it is equivalent if �ym�0���1 �18��, the pole ap-
proach can follow the disturbances when significant nonlin-
ear effects set in…if one is able to solve the 2N+2n coupled
equations for the pole trajectories in the complex plane. The
next remark somewhat simplifies the task. In the limits N
�1, �→0+ and �N=O�1� that led to Eq. �8�, accounting for
n=O�1� extra pole pairs—as is assumed here—exerts only a
small O��� perturbation on the 2N poles already aligned.
Accordingly the distribution P�B� of poles along the main
alignments at x=0 �mod 2
� may be kept unchanged, and
given by Eqs. �16�, �27�, and �31�, when computing the mo-
tion of 2n supplementary ones.

In the illustrative examples that follow only two extra
poles �n=1� located at �iy�t� �mod 2
�, y�0, then at

� iy�t� are considered, to begin with.
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A. Extra poles at x¶0 (mod 2�)

When the two supplementary poles are located at �iy�t�
�mod 2
�, their altitude y�t� is determined from Eq. �3�—
within O�� ,1 /N� fractional errors in the limits N�1, �
→0+ and �N=O�1�—by the ordinary differential equation
�ODE�

dy

dt
=�– �P�B��coth
 y − B�

2
�dB� − 1 �42�

=
2



arcsin�sin�
N��coth�y/2�� − 1, �y� � Bmax, �43�

where P�B� is the same as given by Eqs. �16�, �27�, and �31�,
to leading order, and leads to the closed form �43� on inte-
gration �15�; for �y��Bmax, dy /dt=0 by Eq. �8�. Therefore,
whenever 0�1−2�N=O�1� and �→0+, any initial y�0�
�Bmax will ultimately lead to y�+��=Bmax

+ , thereby adding
one new incomer to the already present continuum. Put in
words: if 2�N�1 initially, the main pattern is unstable to
disturbances with poles at �iy�t�, and the latter process tends
to make 2N� approach 1 from below.

Periodic boundary conditions would allow the supplemen-
tary pair to be initially off the x axis, say at x�0�� iy�0� with
0�x�0��
 �mod 2
�. The “horizontal” attraction by the
main pole condensation at x=0 �O���, actually� �10� will
make x�t� decrease, while y�t� still does if 2N��1. Ulti-
mately, the extra pole pair will join the main pole alignment
�in finite time�, and the previous conclusion is qualitatively
unchanged: the process makes N increase by one. When
Neumann conditions are adopted, however, at least two pairs
�x�t�� iy�t� are needed if x�t��0, to meet the requirement
of symmetry about x=0, and two possibilities are encoun-
tered as to their fate. In the first instance, corresponding to
not-too-small x�0�s and moderate values of y�0�, the process
is qualitatively the same as above, except that two pairs si-
multaneously join the main condensation at �y��Bmax,
thereby making N increase by 2. If x�0� is small and y�0�
well above Bmax, the horizontal mutual attraction between the
pair members may make them hit the x=0 axis at such a
finite time tc that y�tc��Bmax; this is best shown from Eq. �3�
specialized to x�t��1, whereby dx /dt�−� /x then x2�t�
+2��t− tc��0 for t� tc. The double pole thus formed at
iy�tc� then instantly splits into two simple ones lying on the
x=0 axis at y�t�−y�tc�� � �t− tc�1/2, leading to a subsequent
dynamics that ultimately ends similar to the beginning of this
section if 2N��1.

B. Extra poles at x¶� (mod 2�)

In case the supplementary poles are located at 
� iy�t�,
Eq. �42� is replaced by

dy

dt
=

2



arcsin�sin�
N��tanh�y/2�� − 1 + � coth y , �44�

since coth�u+ i
 /2�=tanh u. Even though ��1 the last term
in Eq. �44�, stemming from the interaction of the extra pole
with its complex conjugate, cannot be simply discarded, for
otherwise Eq. �44� would not be uniformly valid if y be-

comes small. According to Eq. �44�, any initial y�0� indeed
ultimately leads to y�+��=�+o��� and to a small �O����
stable disturbance centered at x=
 �mod 2
� whenever
2N��1. Although the main pattern’s curvature �xx�
��0 is
O�1�, and the O��� contribution to ��x , t� of the extra pole
pair is small, it is nevertheless enough �7� to render the flame
shape ��x , t� concave downward at x=
; as shown in �7�,
this occurs as soon as the extra poles enter a thin strip about
the real axis, �y���4
�. Incorporating O�N� extra pairs will
also do, but the process of dynamical trough splitting is not
within reach of such ODEs as Eqs. �44� when n=O�N�. The
structure of two-crested steady patterns with n=O�N� will be
studied in Sec. VII.

Like in Sec. VI A one might begin generalizing the
present discussion by envisaging a single pair of extra poles
off the x=
 axis, but this is already covered in the preceding
paragraphs: if 0�x�0��
 the pair ultimately joins the poles
at x=0 �mod 2
�. It is more revealing to consider two such
pairs at 
�x�t�� iy�t� with x�t� “small enough,” in a way
compatible with Neumann conditions, because something
new appears. Comparatively large x�0�s will clearly lead to
pairs that ultimately stick at x=0 �mod 2
� because their
mutual horizontal attraction could not oppose that of the
main alignments. The other extreme of very small x�0� again
leads to the formation of double poles at some 
� iy�tc�,
then a subsequent evolution of the two pairs 
� iy1,2 along
the line x=
 �mod 2
� until they settle at O��� distances to
the real axis if 2N��1. The important conclusion is that
stable two-crest patterns exist when Neumann conditions are
used and 2N��1.

By continuity there exist separating trajectories S�, such
that none of the above behaviors is observed if the pole pairs
initially sit on them. The lines S� lead the two supplemen-
tary pairs towards an unstable equilibrium, a result of a com-
petition between attraction by the main pole population at
x=0 �mod 2
�, and the mutual attractions and/or repulsions
among the pair members. For ��1, and N�=O�1�, using
the steady version of Eq. �3� and the pole density given
by Eqs. �16�, �27�, and �31�, one can show that such
equilibriums correspond to x�+��= � �2
� /A�1/2+¯ and
y�+��= ��+¯ to leading order, again with A
=tanh�Bmax /2�=sin�
N��. This shows that there exist even
more general steady solutions than considered elsewhere in
the paper and in the literature �except in �7� where a similar
conjecture was made on a numerical basis�. One could have
included other pairs as well, some of which along the x=

�mod 2
� axis.

Our last remark is to again stress that the free dynamics
�3� conserves the total number of poles �if finite�. By the
same token, allowing this number to vary with time is a
means to study a forced version of the Sivashinsky equation:
adding a pair of poles xm� iym at t= tm amounts to account-
ing for a term �m�x���t− tm� in the right-hand side of Eq. �1�,
and combining many �ms with various phases �as to vary
their signs�, amplitudes ��−4� exp�−�ym�� if �ym��1� and
times of implantation �tm� could help one investigate the re-
sponse of flames to a rich class of weak random noises. We
understand that a similar proposal was developed about the
“kicked” Burgers equation �19�, i.e., Eq. �1� without the in-
tegral term in the one-dimensional case.
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VII. BICOALESCED PERIODIC PATTERNS

We now take up the structure of “steady” 2
-periodic
solutions of Eq. �1� that would have N pairs of poles iB�

�mod 2
�, �= �1, �2, . . . , �N, and n=O�N� other pairs at

+ ib� �mod 2
�, �= �1, �2, . . . , �n. For brevity, we will
say that the pole alignments reside “at” x=0 or x=
, respec-
tively, such as the two crests per cell they correspond to.
Because coth�u+ i
 /2�� tanh�u�, the steady versions of Eq.
�3� corresponding to such bicoalesced flame patterns read as

� 	
�=−N

N

���

coth
B� − B�

2
� + � 	

�=−n

n

tanh
B� − b�

2
� = sgn�B�� ,

�45�

� 	
�=−n

n

���

coth
b� − b�

2
� + � 	

�=−N

N

tanh
b� − B�

2
� = sgn�b�� .

�46�

In the distinguished limits �→0+, N�=O�1�, n�=O�1�, the
poles at x=0 and x=
 are densely packed �at the scale of the
wavelength�, with densities P�B� and p�b�, respectively.
Both P and p will be non-negative and, in general, com-
pactly supported: P��B��Bmax�=0= p��b��bmax�. The ranges
Bmax and bmax are to be found as part of the solutions to the
continuous versions of Eqs. �45� and �46�,

�– �P�B��coth
B − B�

2
�dB� +� �p�b��tanh
B − b�

2
�db�

= sgn�B� , �47�

�– �p�b��coth
b − b�

2
�db� +� �P�B��tanh
b − B�

2
�dB�

= sgn�b� , �48�

that are valid for �B��Bmax and �b��bmax, respectively. To
restore some symmetry we set

tanh�B/2� = A sin �, A � tanh�Bmax/2� � 1, �49�

tanh�b/2� = a sin �, a � tanh�bmax/2� � 1, �50�

in Eqs. �47� and �48�, then acknowledge that both P�·� and
p�·� are even functions, which allows one to suppress some
odd parts of the integrands, viewed as functions of �� �or
��� at fixed � �or ��. Some cumbersome algebra ultimately
transforms Eqs. �47� and �48� into

�– 2�P����cos ��

sin � − sin ��
d�� + Aa sin �

	� 2�p����cos ��

1 − A2a2 sin2 �� sin2 �
d��

= sgn��� , �51�

�– 2�p����cos ��

sin � − sin ��
d�� + Aa sin �

	� 2�P����cos ��

1 − A2a2 sin2 �� sin2 �
d��

= sgn��� , �52�

where all the variables �� ,���, �� ,��� are now taken in the
common �−
 /2,
 /2� range. One may thus adopt a common
notation for them, �� ,��� say, in both Eqs. �51� and �52� and
subtract the results to eliminate the sgn�·� functions in the
right-hand sides. This produces an homogeneous equation
for the difference P�·�− p�·�, of which one obvious solution
is P− p�0. Hence the important result: if P= p is indeed a
viable solution, then

P�B� = J�� = arcsin
 tanh B/2
A

�� , �53�

p�b� = J�� = arcsin
 tanh b/2
a

�� , �54�

where J��� is the same function for both. The even J�·� func-
tion itself is then found from Eqs. �51� or �52� to satisfy

�–
−
/2


/2 2�J����cos ��

sin � − sin ��
d�� + Aa

	 �
−
/2


/2 2�J����sin � cos ��

1 − A2a2 sin2 �� sin2 �
d�� = sgn��� .

�55�

Further changing the independent variable to �, with

sin � =
�1 + Aa�sin �

1 + Aa sin2 �
, �56�

fortunately converts the seemingly hopeless �55� into a form
equivalent to the already solved Eq. �28�, � playing the part
that the former � did there �most easily shown by starting
from Eq. �28��. Accordingly, the solution to Eq. �55� is avail-
able in terms of the already found pole density pertaining to
the isolated crests, then the monocoalesced ones: from Eq.
�16� one indeed has

2�J��� =
1


2 ln
1 + cos �

1 − cos �
, �57�

with � defined in Eq. �56�. As said earlier, Eqs. �53� and �54�,
P�B� is immediately retrieved upon setting sin �
=tanh�B /2�coth�Bmax /2� in Eqs. �56� and �57�; the same op-
eration is used to obtain p�b� from J���, upon setting sin �
=tanh�b /2�coth�bmax /2� in Eqs. �57� and �56�.

The first step to obtain Bmax and bmax again is to compute
the cumulative pole densities. For example R�B�
=�0

BP�B��dB� is computed as follows from Eqs. �57� and
�56�:

2
2�R�B� = �
0

�

ln
1 + cos ��

1 − cos ��
�2A cos ��d��

1 − A2 sin2 ��
, �58�
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=ln
1 + A sin �

1 − A sin �
ln

1 + cos �

1 − cos �

+ 2�
0

���� d��

sin ��
ln

1 + A sin ��

1 − A sin ��
, �59�

again with the understanding that � �or ��� is viewed as a
function of � �or ��� via Eq. �56�, and conversely; Eq. �58� is
obtained from the definition of R�B� upon setting
tanh�B /2�=A sin �, and Eq. �59� results from an integration
by parts. The cumulative density pertaining to p�b� is ob-
tained in the same way from Eqs. �57� and �56�, now thanks
to tanh�b /2�=a sin �: the result is similar to Eq. �59�, except
for the substitutions A→a, �→�, B→b, R�B�→r�b�. The
normalizations R�Bmax�=N and r�bmax�=n thus impose the
two conditions

N�
2 = �
0


/2 d�

sin �
ln

1 + A sin �

1 − A sin �
, �60�

n�
2 = �
0


/2 d�

sin �
ln

1 + a sin �

1 − a sin �
, �61�

that may be compared to the former equation �30�, and re-
duce to it when Aa=0. Although we could not compute the
above normalization integrals in closed forms, this can be
done numerically without difficulty to obtain A and a as
function of N� and n� �or conversely�. Note that N�n is
equivalent to A�a. N�n also implies that R�·��r�·� when
both are evaluated at the same argument, Fig. 7.

Before closing this section, it remains to compare the
above predictions to direct numerical resolutions of Eqs. �45�
and �46� by the Newton-Raphson method. This is done in
Figs. 7 and 8. Figure 8 will hopefully convince the reader
that both P�B� and p�b� can be expressed in terms of the
single function J��� given by Eq. �57�.

Now that the pole densities are available, one may try to
compute the corresponding increase in flame speed, V, from

Eqs. �47� and �48� without solving them �such as in Sec. V�,
to produce

V = 2��N + n��1 − �N + n���; �62�

this simple formula reduce to Eq. �40� if n=0, and could
have been deduced directly from the discrete pole equations,
without solving them. The sum N+n plays the part N did for
monocoalesced patterns and, as is shown upon specializing
Eq. �47� to B=Bmax, has to satisfy 2�N+n���1.

As mentioned earlier, the flame slope �x�x� pertaining to
the continuous approximation�s� can be obtained directly
from the corresponding pole density�ies� via an analytical
continuation from the real B �or b� axis to �ix. Using the
same procedure here gives, for 0�x�
,

�x = −
1



sgn�x̄ − x�ln

cosh � + 1

cosh � − 1
, �63�

sinh � =
�1 + Aa�tan x/2
A − a tan2 x/2

�64�

for bicoalesced flames, x̄ being the point where sinh2 �→�
in Eq. �64� and, therefore, �x�x̄�=0,

x̄ = 2 arctan� tanh Bmax/2
tanh bmax/2

. �65�

At the flame front trough, �=�xx�x̄�=2�A+a� /
�1+Aa�
�A /
: the corresponding critical noise amplitude c���
needed to trigger the appearance of subwrinkles markedly
exceeds that pertaining to monocoalesced fronts �see Sec. I�.
Two extra pole pairs initially placed at the points �x̄� i�
�mod 2
� would stay there in unstable equilibrium. There
exist separating trajectories S� passing through them, which
delineates the basins of attraction of the main pole conden-
sations at x=0 or x=
. Only the trajectories of initially re-
mote extra poles that are close enough to S� will enter the
O���� strip adjacent to the B=0 axis where their direct in-
fluence on the main pattern becomes visible �7�. As seen
from the real axis, the process then manifests itself as extra
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FIG. 7. Cumulative pole densities R�B� �upper curves� and r�b�
for a bicoalesced periodic pattern with 1 /�=600.5, N=200, n
=100: the solid and the dotted lines are from Eqs. �53�, �54�, �57�,
and �56�; the dashed and the dotted-dashed ones are the upper hulls
of the exact staircases �see Fig. 1�. As �N+n�=Nopt���, B200=�.
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bicoalesced periodic flame with N=200, n=100, 1 /�=600.5.
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sharp subwrinkles seemingly “emitted” suddenly at x� � x̄
�mod 2
� before traveling to one of the main cusps where
they eventually join a main condensation. The
N /n-dependent shape of such separating trajectories thus
controls the fate of “supplementary” poles of whatever ori-
gin, initial conditions or forcing; this will be exploited else-
where, though one can already confirm that stable two-crest
steady patterns with n=O�N��1 /� exist if Neumann condi-
tions are employed. With 2
-periodic conditions these are
unstable even if 2��N+n�=1, as is seen by considering ini-
tial conditions where the 2n poles are slightly shifted to the
left of x=
 �mod 2
�: both crests will ultimately merge.

Comparisons with accurate numerical resolutions of the
pole equations �45� and �46� are again good, see Fig. 9. For
�=1 /199.5, N=80, n=20 they yield x̄=2.053 973, whereas
our prediction �65�, with A and a iteratively obtained from
the normalization conditions �60� and �61�, gives x̄
=2.053 888. Similar to R�B� and r�b�, ��x� cannot be ob-
tained in closed form, yet is readily accessible numerically.
Also, if A=a, elementary trigonometry shows that the pre-
dicted flame slope �63� resumes the result �35�, up to a two-
fold reduction in x and Bmax scales.

VIII. CONCLUDING REMARKS AND OPEN PROBLEMS

The above analyses may convey the feeling that the pole
densities obtained so far have a family likeness, which is true
because they were all deduced from the solution �16� pertain-
ing to isolated crests via adequate changes of independent
variable. Whereas Eq. �16� itself basically follows from stan-
dard Fourier analysis combined with a lucky resummation of
the series thus obtained �15�, it would be interesting to un-
derstand why the changes of variable �27� then �56� work
so well. Admittedly the integral equation �26� bears some
formal resemblance with Eq. �7�, which guided us to propose
the variable �27�; but that introduced in Eq. �56� looks more
strange to us, and was actually discovered by trial and error
after the “resolvent” integral equation �55� is obtained.
Yet Eq. �56� unlikely solely comes “out of the blue.” In
effect, one may note that Eq. �56� is equivalent to tanh���
=tanh��max�sin � if one defines tanh2��max�� tanh�Bmax /2�

	tanh�bmax /2� and sets tanh�� /2�=tanh��max /2�sin �,
which clearly mirrors what was employed to map the mono-
coalesced periodic case onto the isolated-crest problem.
Hence Eq. �56� rests on the celebrated composition law for
hyperbolic tangents ��1 ,�2�: �1*�2= ��1+�2� / �1+�1�2�. It
would be interesting to know whether the associated group
properties give access to still more general solutions to the
Sivashinsky equation �1�. That the scale-invariant signum
function featured in Eqs. �7� and �8� is left unchanged by the
successive changes of variables also is a key property that

traces back to the presence of the Hilbert transform Ĥ�−�x�
in Eq. �1�: in fine, it expresses that the complex velocity
about the flame is a sectionally analytic function in the com-
plex x plane, which is indeed a robust statement for it is little
affected by conformal changes of variables that would leave
the real axis globally invariant.

Normalizing P�B� to 2N brings about the grouping N�
and, as long as the integral equations �7� and �8� of the con-
tinuous approximation are concerned, there is no reason why
N should be an integer. Thus, Eqs. �7� and �8� effectively
admit a one-parameter continuum of solutions. The situation
is, in a sense, analogous to the Saffman-Taylor problem of
viscous fingering and related ones �see �20� and the refer-
ences therein�: when surface effects �here curvature� are
omitted, a continuum of steady patterns is found. Equation
�1� for flames is peculiar, however, because one knows from
the very beginning that only a discrete set of steady mono-
coalesced solutions exist, corresponding to N’s that are inte-
gers less than a well-defined �-dependent value, Nopt���. The
Sivashinsky equation �1� thus offers the opportunity to see
how the WKB approaches to finger-width selection devel-
oped �20� for the Saffman-Taylor problem, or kin, can be
transposed to the present system to obtain a quantization
condition on N�; for here “inviscid” solutions are now avail-
able and one knows the answer in advance. This analysis
likely is a key step to study flame response to noise, but has
not yet been completed. Because WKB approaches essen-
tially look for solutions of a linearized equation in the form
exp�i�xk�x��dx��, where k�x�=O�1 /�� depends on the “invis-
cid” solution, it is seen that obtaining the latter to leading
�O�1�� order in � is not enough. Hence the question: how to
compute the leading �O���� correction to the flame profiles
obtained above? Obviously this would require to better un-
derstand the nature of the continuous approximation leading
to the integral equations �7�–�9� or Eqs. �47� and �48� for
pole densities. In this context one may perhaps adopt the—
rather unusual—view point that the exact pole equations �5�,
once specialized to z�= iB� and steady patterns, constitute
Gauss-like quadrature formulas to evaluate Eq. �7� numeri-
cally. How to define a “best” way of choosing the pivotal
values, i.e., the B�s, naturally leads �21� to the notion of
orthogonal polynomials associated with the Sivashinsky
equation �1�. In the case of Wigner’s equation �11� the Her-
mite polynomials are invoked �14�, but we are not aware of
such mathematical analyses about Eq. �1� and Eqs. �7� and
�8�.

Next, we recall that two-crested patterns studied in Sec.
VII also belong to a continuous family of solution profiles,
now indexed by two independent parameters N� ,n�. Even if

0 1 2 3 4 5 6
x coordinate

0

0.5

1

1.5
fl

am
e

sh
ap

e

exact solution
continuous approximation (formula 64)

FIG. 9. Shapes of a bicoalesced flame with 1 /�=199.5, N=80,
n=20: exact �solid line� vs continuous approximation �from integra-
tion of Eq. �63�, dotted-dashed line�.
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N+n is assumed to be given by the optimum value Nopt���
�1 /2�, there still remains the question of how N /n is se-
lected in numerical resolutions of Eq. �1� with Neumann
conditions at x=0, 
. The ratio N /n can undoubtedly be
chosen by the initial flame shape ��x ,0�. In the case of
forced propagations, the noise intensity �� might well also
play a role, for one can imagine situations where
exp�−
 /2����exp�−
 /4��: the noise is then intense
enough to break monocoalesced patterns �see Introduction�,
yet too weak to noticeably affect the more curved two-
crested patterns with N=n.

To tailor a global criterion as to compare the two-crest
patterns and their response to noise, the following remarks
could be of some use. Let us collectively denote the B�s and
b�s as B and b, respectively. The unsteady versions of Eqs.
�45� and �46�—the pole equations for bicoalesced patterns—
may be rewritten as

dB

dt�
= − �BU,

db

dt�
= − �bU , �66�

in terms of U�B ,b�=V�B�+v�b�+w�B ,b�, with

V�B� = �	
�

�B�� − 2�2 	
�,���

ln�sinh
B� − B�

2
� , �67�

w�B,b� = − 2�2	
�,�

ln
cosh
b� − B�

2
� , �68�

and an expression similar to Eq. �67� for v�b�; t�= t /� is time
scaled by the shortest growth time of small-scale wrinkles
�see Introduction�. Accordingly, when the right-hand sides of
Eq. �66� are supplemented with statistically identical inde-

pendent random �e.g., Gaussian� additive forcings, the joint
probability density of �B ,b� will tend to a quantity
�exp�−U�B ,b� /2�, where �1 characterizes the noise in-
tensities. Because U�1 in the small-� limit �since P�B� and
p�b� are O�1 /��� the above exponential is strongly peaked
about the steady solutions. One can thus think of employing
the N /n-dependent scalar U�B ,b�, evaluated at steady state,
as an objective means to discriminate the various two-crested
patterns in the presence of forcing. The task of evaluating U
in the continuous approximation has not yet been completed.
Neither is the analysis required to handle situations where
the poles are slightly misaligned yet still symmetric about
x=0 and x=
 for compatibility with Neumann boundary
conditions.

One must finally stress that the present analyses did not
exhaust all the possibilities of “steady” solutions of Eq. �1�,
even with 2
 as minimal periodicity. The interpolating solu-
tions discovered in �7,22� constitute another class, compris-
ing �possibly many� extra poles, nearly evenly distributed
�17,18� along sinuous curves at a distance from the real axis.
In our opinion such unstable equilibriums are also worth
analyzing in detail for �→0, as are those mentioned in Sec.
VI and generalizations of Eq. �1� itself �23�.

As an end to a numerical work on Eq. �1�, with noise
included in the right-hand side �7�, one of us concluded that
“…it is likely that new analytical studies of the Sivashinsky
equation should be possible: even if the equation is now
almost 30 years old, many things remain to be explained.”
The words still hold true.
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